Cofactor-induced orientation of the DNA bases in single-stranded DNA complexed with RecA protein. A fluorescence anisotropy and time-decay study.
نویسندگان
چکیده
The structure of the RecA-single-stranded DNA complex was investigated by studying the fluorescence emission of poly(deoxy-1,N6-ethenoadenylic acid (poly(d epsilon A)), a fluorescent derivative of poly(dA), under various viscosity conditions. The fluorescence intensity and average lifetime of poly(d epsilon A) are much smaller than those of nonpolymerized monoethenonucleotides (1,N6-ethenoadenosine 5'-triphosphate and 1,N6-ethenoadenine deoxyribose 5'-monophosphate) at low viscosity and reflect intramolecular base-base collisions in the polymer. They considerably increased upon RecA binding, both in the presence and absence of cofactor ATP or adenosine 5'-O-(3-thiotriphosphate). This increase, as well as the increase in fluorescence anisotropy upon RecA binding, was very similar to that which resulted from sucrose addition to free poly(d epsilon A). These observations point to a decrease in the mobility of DNA bases upon RecA binding. In the presence of cofactor, the fluorescence features became independent of viscosity. This strongly suggests the absence of base motion of significant amplitude on the time scale of the fluorescence lifetime (about 10 ns). In the absence of cofactor, however, these features remained sensitive to viscosity, implying residual local motions of the bases. Such cofactor-dependent rigid attachment of DNA bases to stiff phosphate backbone could facilitate the search for homology between two DNA molecules during recombination.
منابع مشابه
جداسازی پروتئین LMG از بافت کبد موش و میانکنش آن با
ABSTRACT In eukaryote cells, DNA is complexed with a series of basic proteins making units of chromatin structure named nucleosomes. In addition, nonhistone proteins with different function are the components of chromatin. Among these proteins, a group with a low mobility on gel electrophoresis have been identified and named LMG. In this study a LMG protein with a molecular weigh of 160 ...
متن کاملIntroduction of a tryptophan reporter group into loop 1 of the recA protein. Examination of the conformational states of the recA-ssDNA complex by fluorescence spectroscopy.
Site-directed mutagenesis was used to replace His-163 in the Loop 1 region of the recA protein with a tryptophan residue. The [H163W]recA protein binds single-stranded DNA (ssDNA), catalyzes ssDNA-dependent ATP hydrolysis, and is fully active in the three-strand exchange reaction. In addition, the fluorescence properties of the Trp-163 reporter group are very sensitive to the binding of nucleot...
متن کاملEffects of DNA sequence and structure on binding of RecA to single-stranded DNA.
Fluorescence anisotropy is used to follow the binding of RecA to short single-stranded DNA (ssDNA) sequences (39 bases) at low DNA and RecA concentration where the initial phase of polymerization occurs. We observe that RecA condensation is extremely sensitive to minute changes in DNA sequences. RecA binds strongly to sequences that are rich in pyrimidines and that lack significant secondary st...
متن کاملrecA protein-promoted ATP hydrolysis occurs throughout recA nucleoprotein filaments.
When recA protein binds cooperatively to single-stranded DNA to form filamentous nucleoprotein complexes, it becomes competent to hydrolyze ATP. No correlation exists between the ends of such complexes and the rate of ATP hydrolysis. ATP hydrolysis is not, therefore, restricted to the terminal subunits on cooperatively bound recA oligomers, but occurs throughout the complex. Similarly, during r...
متن کاملChallenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 9 شماره
صفحات -
تاریخ انتشار 1991